
fDEPARTMENT OF DEFEN cT

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO

Information Visualisation using
Composable Layouts and
Visual Sets

Tim Pattison, Rudi Vernik and
Matthew Phillips

DSTO-RR-0216

DISTRIBUTION STATEMENT A:
Approved for Public Release -

Distribution Unlimited

20011123 005

Information Visualisation using Composable
Layouts and Visual Sets

Tim Pattison, Rudi Vernik & Matthew Phillips

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-RR-0216

ABSTRACT

A modern military enterprise is characterised not only by its people, physical in-
frastructure and geography, but also by its business processes, knowledge management
practices and fluid organisational structures. Management, coordination, planning and
development of the enterprise all require awareness of its current state. To aid these
functions, the DSTO task JNT 00/130 entitled "Assembly and Deployment of Defence
Visualisation Solutions" (ADDVIS) proposes the use of information visualisation tech-
niques to produce integrated enterprise situation awareness pictures tailored to meet
the requirements of ADF functions such as capability development, system manage-
ment and self-synchronisation. To this end, Information Technology Division (ITD) is
performing research and development (R&D) into the next generation of information
visualisation systems which will enable the rapid assembly and deployment of Defence
visualisation solutions. InVision is a component-based software architecture for the
rapid prototyping of information visualisation solutions. Its evolutionary implemen-
tation has given rise to an experimental component infrastructure with the aid of
which the assumptions and goals of the ADDVIS task are being tested. This report
describes the CLOVIS class of views, along with the associated supporting InVision in-
frastructure. The versatility and generality of the CLOVIS class of views described in
this report makes it ideal for rapid prototyping of information visualisations. Its sub-
sumption of a number of existing information layouts constitutes significant progress
towards one of the key goals of In Vision: the integration of various visual representa-
tions, with each chosen on the basis of its particular suitability to the task at hand.

APPROVED FOR PUBLIC RELEASE

DEPARTMENT OF DEFENCE

«FENCE SCIENCE t TECINOLOCT 0I6AKISATI0N DSTO

/\Q FDa-oa-o3if

DSTO-RR-0216

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury, South Australia, Australia 5108

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

© Commonwealth of Australia 2001
AR No. AR-011-960
August, 2001

APPROVED FOR PUBLIC RELEASE

DSTO-RR-0216

Information Visualisation using Composable Layouts and
Visual Sets

EXECUTIVE SUMMARY

Computer-based visualisation has long been recognised for its ability to rapidly convey
large amounts of information. Military situation displays, for example, can simultaneously
show the type, size, location, readiness and mobility of multiple units within the relevant
geographic context. Three dimensional visualisations of the results of simulations which
exercise proposed platforms, equipment or force structures can be used to inform and
justify capability development decisions. And visualisations of systems such as computer,
road or power distribution networks allow the intuitive display and rapid assimilation of
potentially voluminous system status and performance information.

Information visualisation concerns the visualisation of abstract information which ei-
ther has no visible embodiment in the real world, such as server loading in the above
computer network, or for which strict adherence to that embodiment may severely limit
the amount or types of information which can be displayed. As an example of the latter
category, consider the distortion of an "aerial" view of a wide-area computer network to
reveal greater detail of the inter-connected local area networks, or such that proximity
between nodes reflects traffic volumes rather than geographical distance.

A modern enterprise - military or otherwise - is characterised not only by its peo-
ple, physical infrastructure and geography, but also by its business processes, knowledge
management practices and fluid organisational structures. Management, coordination,
planning and development of the enterprise all require awareness of its current state. To
aid these functions, the DSTO task JNT 00/130 entitled "Assembly and Deployment of
Defence Visualisation Solutions" (ADDVIS) proposes the use of information visualisation
techniques to produce integrated enterprise situation awareness pictures tailored to meet
the requirements of ADF functions such as capability development, system management
and self-synchronisation of the network-enabled enterprise.

To this end, Information Technology Division (ITD) is performing research and devel-
opment (R&D) into the next generation of information visualisation systems which will
enable the rapid assembly and deployment of Defence visualisation solutions. In Vision is
a component-based, knowledge-enabled software architecture for the rapid prototyping of
information visualisation solutions. Its evolutionary implementation has given rise to an
experimental component infrastructure with the aid of which the assumptions and goals of
the ADDVIS task are being tested. This report describes the CLOVIS class of views, along
with the associated supporting InVision infrastructure. The versatility and generality of
the CLOVIS class of views described in this report makes it ideal for rapid prototyping of
information visualisations. Its subsumption of a number of existing information layouts
constitutes significant progress towards one of the key goals of In Vision: the integration
of various visual representations, with each chosen on the basis of its particular suitability
to the task at hand.

111

DSTO-RR-0216

DSTO-RR-0216

Authors

Tim Pattison
ITD

Tim Pattison received a B.Sc. (Ma) in Applied Mathematics
and Computing in 1988, a B.E. (Hons) in Electrical and Elec-
tronic Engineering in 1989 and a Ph.D. in neural network mod-
elling of early vision in 1994, all from the University of Adelaide,
South Australia. In 1999 he also completed a Graduate Certifi-
cate in Management (Scientific Leadership) through the Uni-
versity of South Australia. From 1993 to 1999, Tim worked in
the Communications Division of the Defence Science and Tech-
nology Organisation (DSTO) on a variety of research topics
including dual-satellite geolocation, loss-prioritised transport-
layer protocols and social network analysis for the elicitation of
communications requirements. He is now a Senior Research Sci-
entist in the DSTO's Information Technology Division, where
his technical interests include information visualisation systems,
information retrieval, pervasive computing and software agents.

Rudi Vernik
ITD

Rudi Vernik is a Principal Research Scientist at the Defence Sci-
ence and Technology Organisation. In his position as Head of
Enterprise Visualisation, Instrumentation and Synchronisation
Group, he leads research activities aimed at supporting Defence
clients in their development of capabilities for knowledge and
information-based warfare. Specific areas of interest include in-
formation visualization, component-based software engineering,
enterprise instrumentation, and information domain modeling.
Rudi has a PhD in Computer and Information Science (Soft-
ware Engineering) from the University of South Australia. He
also has a Bachelor of Electronics Engineering (with Distinc-
tion) and a Diploma of Communications Engineering from the
Royal Melbourne Institute of Technology. He is a member of
the IEEE.

DSTO-RR-0216

Matthew Phillips
ITD

Matthew Phillips is a researcher employed in Enterprise Vi-
sualisation, Instrumentation and Synchronisation Group, In-
formation Technology Division. His research interests include
distributed systems, programming language design, software vi-
sualisation and object-oriented software engineering. Matthew
has a Bachelor of Computer Science (with Honours) from The
University of Adelaide.

DSTO-RR-0216

Contents

1 Introduction 1

2 Flexible visualisation of attributed graphs 2

2.1 Attributed graphs 2

2.2 Efficient traversal 2

2.3 Generalised layout 3

2.4 Clustering 3

2.5 Knowledge Crystallisation 4

2.6 Visual sets 5

3 Composable Layouts and Visual Sets (CLOVIS) 6

3.1 Attributed graph model 7

3.2 Layout Composition Framework 7

3.2.1 Layout composition tree 8

3.2.2 Layout strategies 10

3.2.3 Layout coordination 13

3.3 Visual Sets 14

3.4 Summary 15

4 Applications 16

4.1 InVision framework 16

4.2 Directory structure 18

4.3 Message traffic 19

4.4 Software structure 19

4.5 Summary 19

5 Future Work 20

6 Conclusion 22

References 22

DSTO-RR-0216

DSTO-RR-0216

1 Introduction

Graph visualisation and navigation techniques are known to assist the user in exploring
large datasets which contain inherent relations among the data elements [1]. Examples
of such data include world-wide web and intranet pages, computer and communication
networks, software systems, social networks and distributed databases. Conventional
graph-drawing techniques typically scale poorly with the number of vertices (data ele-
ments) and edges due to the increasing layout computation and decreasing resolution
available on fixed-sized displays. However, if we remove the requirement that all informa-
tion be displayed simultaneously, interactive techniques such as navigation, elision, filter-
ing, searching, details on demand, and focus and context approaches, which are common
in information visualisation [2], can be used to circumvent these limitations (see e.g. [3,4]).

Here we consider the use of graph drawing and information visualisation techniques
for the flexible visualisation of information which can be modelled as an attributed graph.
Despite its apparent simplicity, an attributed graph can model a wide range of different
types of information, including, for example, system descriptions and database content.
Information about the entities, to which the graph vertices correspond, and the relation-
ships between them, to which the graph edges correspond, is modelled as vertex and edge
attributes respectively. Although many graph drawing techniques exploit the informa-
tion inherent in the graph edges, graph visualisation tools provide little or no support for
the visualisation or exploitation of vertex and edge attributes, beyond perhaps the use of
simple text labels. Furthermore, graph drawing techniques often produce uninformative
or unaesthetic results when applied to sparse graphs, or to those lacking edges entirely.
Yet data in the latter category can be richly exploited by many scientific and business
data visualisation tools. Vertex attributes are also the focus of database visualisation
tools [5,6,7], although some tools in this class also include graph visualisation techniques
(see e.g. [8]). In short, no single class of information visualisation tools or techniques pro-
vides comprehensive support for the visualisation of information modelled as an attributed
graph.

In this paper, we present the Composable Layouts and Visual Sets (CLoVlS) frame-
work for the visualisation of information which can be modelled as an attributed graph.
The framework provides for the integration of a broad range of applicable information vi-
sualisation techniques through the flexible composition of their layouts and the consistent
treatment of information overlays for the visualisation of attributes. The user is thereby
provided with the freedom to simultaneously exploit the strengths of a number of informa-
tion visualisation techniques. Any graph, database, scientific data or other visualisation
technique whose underlying visual representation can be viewed as a layout of the vertices
of an attributed graph can be accommodated by the framework, regardless of how much
or how little of the information contained in the graph is actually exploited by the layout.
This unifying model will be seen in Section 3.2.2 to suggest entire classes of potentially
useful layout techniques which have yet to be considered in the literature.

This paper is structured as follows. In Section 2, the information visualisation concepts
relevant to the flexible visualisation of information modelled as an attributed graph are
reviewed. In Section 3, the CLOVIS class of views and supporting software framework are
described. In Section 4, examples of the preliminary validation of CLOVIS view concepts

DSTO-RR-0216

in several application domains are presented. In Section.5, various aspects of the CLOVIS
framework are analysed, future features suggested, and topics of future research identified.
And finally, the original contributions of this paper are summarised in Section 6.

2 Flexible visualisation of attributed graphs

2.1 Attributed graphs

Datasets which can be modelled as multi-attributed directed graphs arise for example
from binary entity-relationship databases [9]. The visualisation of such data presents both
opportunities and challenges for conventional graph drawing approaches. Most obviously,
the presence of edge and vertex attributes increases the amount, types, and possible combi-
nations, of information which may need to be represented, while at the same time offering
the means by which unwanted graph elements can be filtered out. In addition, edge at-
tributes can be used to select a subset of the edges for use in vertex layout, while vertex
attributes can be used to layout vertices by applying multidimensional scaling [10] to some
measure of their similarities, or mapped directly into vertex positions (see e.g. [11,3,7]).
Attributes can also serve as the basis for preferential treatment when attempting to min-
imise aesthetic imperfections such as vertex occlusions or edge crossings. In short, the
presence of attributes on graph elements opens up many research questions in graph visu-
alisation which are not addressed in the graph drawing literature. The CLOVIS framework
presented in this paper facilitates the exploration of this problem space.

2.2 Efficient traversal

The visual traversal of large graph-based data structures can be made more efficient
by super-imposing a viewing structure which has efficient traversal properties [12]. One
such structure is the (ideally balanced) tree, which can be super-imposed on a graph by
hierarchically clustering the nodes. Traversal of the data can then be performed through
navigation of the corresponding cluster tree. The use of a separate view for navigation
of this cluster tree is undesirable in that it both consumes valuable display real-estate
and requires the shifting of attention between it and the view of the original graph. A
conventional drawing of the cluster tree in the same view as the original graph would
tend to defeat the goal of uncluttering the view. This dilemma can be resolved through
the use of a Tree-Map [13] in which each rectangle, corresponding to a non-leaf node
of the cluster tree, serves as a container for the display of not only the corresponding
sub-clusters, but also any leaf nodes, representing the vertices of the original graph. In
addition to the inherent space efficiency of the Tree-Map, elision of the content of clusters
and the interactive choice of a sub-tree for display could be used to reduce the complexity
of the display, as well as the computation required for layout. Although the Tree-Map
was originally conceived as a summary view for an entire tree, the use of a Nested Tree-
Map [13] would allow the user access to internal nodes of the tree for the purposes of
sub-tree exploration and elision.

DSTO-RR-0216

2.3 Generalised layout

The Tree-Map uses an alternating pattern of horizontal and vertical linear layouts of
rectangular containers. To improve the flexibility and customisability of the resultant
display, at the expense of some space efficiency1, we propose here a generalisation of this
approach in which: a greater choice of intra-container layouts, including graph layouts,
is available; each container may use a different layout; and a greater choice of shapes for
leaf nodes is offered. Given a greater choice of intra-container layouts, those based on the
graph structure can be supplemented by those - such as scatterplots - which reflect the
attributes of the graph vertices or edges. In addition, both structure and attributes might
be ignored in the interest of computational or space efficiency, especially in the early
stages of exploratory interaction with large data sets. In cases where structure-based
graph layouts are still appropriate, the goals of interactivity and computational scalability
are also assisted by the divide-and-conquer approach inherent in the use of per-container
layouts, since each such layout is typically applied to a small sub-graph of the original
graph. The use of distinctive layouts for each container can provide a pre-attentive visual
cue to the distinction between containers, which is in addition to container indentation
and spacing. In some application domains, there may also be "natural" or conventional
layouts for certain object types, such as a hierarchy tree for the members of a department,
a two-dimensional array for image pixels, or a linear (flow) layout for the members of an
ordered set. Similarly, the use of readily-recognised shapes for the vertices of the original
graph can aid rapid comprehension, especially in application domains for which there is a
well-established symbology.

The CLOVIS framework exploits these three generalisations to provide a powerful new
class of views based on the flexible composition of vertex layouts. The combinatorial
variety of views in this class will benefit both the exploratory data analyst, who values
flexibility in pursuit of an evolving understanding of the data, and the operational user, for
whom a more tailored view can now be produced. Support for composable layouts is pro-
vided by the Layout Composition Framework (LCF), which is described in Section 3. The
LCF is a component-based software framework for flexible layout composition in which
each layout is implemented as a pluggable component. The design and implementation
of this framework adapts and extends standard techniques from the field of software user
interface design (see e.g. [14]), where the choice and composition of layouts for user inter-
face components is commonplace. In contrast, layout composition does not appear to have
been widely adopted in the graph drawing literature, perhaps because of the need for the
a priori specification of the combination of layouts to be used. Nevertheless, the drawing
of combinatorial data structures using the composition of tree, circular, spiral and linear
layouts was supported by the Adocs system [15], while tree visualisation using per-subtree
layouts is supported by the Graph Visualisation Framework [16].

2.4 Clustering

Vertex clustering involves the allocation of the vertices of a graph to sets on the basis
of pre-specified similarity criteria. These criteria may take account of graph structure or

The reduction in space efficiency can be countered by the use of tree navigation techniques.

DSTO-RR-0216

vertex attributes [1], spatial proximity in a given layout [3], or even information not repre-
sented in the graph [1]. Once the clustering criteria have been specified, a corresponding
clustering algorithm can usually be designed and automated.

A hierarchically clustered graph is one in which the vertices are assigned to sets - or
clusters - which form a recursive partitioning of the set of vertices of the graph. Although
algorithms exist for drawing hierarchically clustered graphs [17], they do not address the
problems of visual clutter and computational cost for large graphs, or provide for efficient
interactive traversal of the graph. Vertex clustering has been used to reduce the visual
complexity and layout cost of graph drawings [18,4] by reducing the number of vertices,
and hence also edges, to be displayed. The elision of cluster content used to achieve this
reduction is also amenable to interactive use, allowing drill-down and roll-up through the
tree representing the cluster hierarchy (see e.g. [19]). Elision of the content of a cluster
should result in the aggregation or abridgement [19] of the edges incident on the vertices
in the cluster, and the association of these aggregate edges with the meta-node - or in
our case container - corresponding to the abridged cluster. The container should then be
treated as any other vertex by a graph layout algorithm, which sees only these abridged

edges. Generic extension of the concept of abridgement to the case of attributed graphs
will require the specification of an appropriate strategy(s) for the fusion of edge and vertex
attributes.

Although hierarchical clustering serves as a convenient starting point for explanation
of our approach, the tree in question should properly be thought of as describing the
container nesting pattern used for layout composition, rather than a cluster tree. While
the user is free to specify (clustering criteria which result in) an hierarchical clustering
of the vertex set, there is no requirement that it be hierarchical, nor that the clusters be
mutually exclusive.

2.5 Knowledge Crystallisation

The users of an information visualisation system can be caricatured as falling into two
classes [5]: the operational or executive user, who interacts with largely pre-defined views
to answer routine questions; and the exploratory data analyst (EDA), whose views must
be continuously tailored to support an emerging understanding of the data. In practice,
however, there is a continuum of user types between these two extremes. Visualisation
tools should be consciously positioned to support part or parts of this continuum. Our
prototype software framework for CLOVIS views has focused initially on the EDA end of the
spectrum. Support for the executive user will be added incrementally, with a simplified
user interface hiding low-level functionality and supporting macros and intelligent user
agents.

An important application of information visualisation at the EDA end of the spectrum
is knowledge crystallisation. In a knowledge crystallisation task, "[...] a person gathers
information for some purpose, makes sense of it [...] by constructing a representational
framework [...], and then packages it into some form for communication or action." [2].
Having identified information which may be of interest, and obtained it in the form of an
attributed graph, the user must find a representational framework which is appropriate
to the task at hand. Note that although its organisation into an attributed graph already

DSTO-RR-0216

constitutes a representational framework, which may even be supplemented by the schema
of the database (if any) from which the data are sourced, neither may be well-suited to
the current task.

Vertex clustering is one of a number of tools which can be used in the search for a
representational framework. A suitable choice of clustering criteria is usually arrived at
through an iterative process during the sense-making stage, rather than being evident a
priori. Clustering support for knowledge crystallisation tasks should therefore provide for
the interactive selection of the clustering algorithm and the specification of its parameters.
The LCF currently supports a flexible querying approach to clustering, in which a cluster
is specified on the basis of an interactively specified graph template which must be matched
by each of its members. This template takes into account vertex and edge attributes, as
well as graph structure. In the future, other automated clustering approaches should also
be supported by the LCF.

Visual communication of the results of the sense-making process relies on the construc-
tion of one or more views which make explicit any relevant patterns or other information
identified in the data. Identification of regularities in the data allows for the simplification
of the problem space in support of decision-making. The cognitive load on the decision-
maker can also be reduced by making explicit any information which is relevant to the
decision. For example, if the path distance between vertices through the attributed graph
is significant, then a suitable visualisation might be a multi-dimensional scaled representa-
tion of path distance [20], in which the Euclidean distance between vertices approximates
the corresponding path distance. By the nature of the knowledge crystallisation process,
the patterns or other relevant information, or the criteria for finding them, cannot be
specified a priori. Similarly, it is not possible to choose in advance the relative priority of
various aesthetic criteria for the drawing of a relevant sub-graph. Graph-based support for
knowledge crystallisation should therefore support experimentation with a range of vertex
layout algorithms through their interactive selection and customisation.

2.6 Visual sets

As part of the sense-making process, the exploratory data analyst engaged in knowledge
crystallisation will typically need to query the data stored in the attributed graph. The
querying mechanism might involve the stipulation of criteria which must be matched by
a specified vertex or edge attribute, and return the set of matched vertices or edges.
Alternatively, it might re-use the template-based query mechanism - currently used by
the LCF in the assignment of vertices to containers - to match larger subgraphs. In
order to support the visualisation of the query results, while preserving the user's existing
mental map of the data and avoiding the need to shift attention to a different view,
the CLOVIS framework provides for the assignment of visual attributes to the currently-
displayed graph elements selected by the query Other than position, any visual attribute,
including size, shape, colour, texture, visibility and label font attributes, can be specified
either explicitly or implicitly. The implicit specification of visual attributes, through the
specification of a mapping of the selected graph attribute values onto visual appearance,
has been demonstrated in information visualisation environments such as Datasplash [6,7]
and rVEE [21]. A set of graph elements and an associated specification of their visual

DSTO-RR-0216

appearance is referred to here as a visual set. In contrast, a collection in Visage [5]
corresponds to a set of graph elements without an associated appearance specification.

The concept of visual sets extends the notion of transparencies which are overlaid
on maps, radarscopes and other displays in two important regards. Firstly, visual sets
can specify visual attributes such as size, shape and visibility which cannot be easily
and independently changed by super-positioning alone. And secondly, they permit finer
control over the combination of multiple "overlays". Whereas multiple overlays affecting
the same visual attribute on the same graph element would typically produce unappealing
results, visual sets allow more flexible arbitration of such conflicts, through for example
the use of a stacking order to determine which "overlay" should prevail. Furthermore,
the accumulation of overlays does not, for example, permit the selective highlighting of
the intersection set of the graph elements to which they are applied, which could help
to reduce visual clutter. In contrast, visual sets open the way for arbitrary set-theoretic
combinations of the underlying graph element sets. Despite these differences, however,
there are a number of similarities in the way overlays and visual sets are managed. For
example, both can be removed to control visual clutter and later re-applied, or grouped to
form composites. To facilitate these and other manipulations, both should also be named
and hierarchically organised to facilitate easy identification and access.

The generalisation of overlays to apply to attributes such as size and shape comes at
a cost. Since changing these attributes can reduce the quality of the current vertex layout
by for example introducing graph element occlusion, it may be necessary to rerun the
vertex layout algorithm(s) after one or more visual sets is activated. Animation techniques
described in [22] are used to preserve the user's mental map during the re-layout process
by allowing them to visually track the movement of each node.

3 Composable Layouts and Visual Sets (CLOVIS)

In this section, we describe the use of composable layouts and visual sets (CLOVIS) for
the visualisation of abstract information which can be modelled as an attributed graph.
The imposition of a container tree as a viewing structure on the attributed graph pro-
vides for efficient navigation of the information it contains, as required by the operational
user. On the other hand, the combinatorial variety of vertex-container assignments, per-
container layouts, visual set memberships and associated appearances available for the
visualisation of a single graph offers the high degree of flexibility demanded by the ex-
ploratory data analyst (EDA). Of course, the EDA will in general also require access to,
and coordination between, a variety of non-CLOVis visualisations, including such staples as
charts and tables. The integration of these various view types into visualisation solutions
which can be rapidly assembled and deployed is the subject of the In Vision project [23],
a brief overview of which is provided in Section 4.1.

Prototype component-based software infrastructure has been developed within the
In Vision framework to support the creation and exploration of CLOVIS visualisations. Its
design emphasises support for the flexible definition and customisation of views rather than
the optimal design of any individual view, since suitable optimality criteria are often not
known in advance. The requirement for interactive information visualisation, as opposed to

DSTO-RR-0216

batch-mode graph drawing, has also lead to an emphasis on low computational complexity.

Section 3.1 describes the underlying attributed graph model to be visualised. The
Layout Composition Framework and visual set management tools provided by the CLOVIS

infrastructure are described in Sections 3.2 and 3.3 respectively.

3.1 Attributed graph model

Each vertex of the attributed graph represents a modelled entity, and each directed
edge a relationship between entities. Information about the entities and their relationships
is stored as attributes on the corresponding vertices and edges. Each attribute is typed
to facilitate sorting, querying, fusion and other operations on the graph elements. Each
graph element - vertex or edge - can have any number of attributes of various types.
The only mandatory attribute is the meta-name, whose value controls the set of (other)
attributes allocated to that graph element. The unique role of this attribute has lead some
authors to distinguish it with the title "label" [24], and hence to refer to the graph as a
labelled attributed graph.

The data represented by this model could arise for example from a binary entity-
relationship database (see e.g. [9]). Accordingly, the attributed graph has an associated
meta-graph - the equivalent of a database schema - in which a single vertex (respectively
edge) represents the set of graph vertices (respectively edges) bearing its label as their
meta-name attribute. This meta-graph, which includes the specification of attribute names
and types, along with bounds on the number of attributes and edges, constitutes a set
of constraints on the underlying attributed graph which can be used both to provide for
its efficient storage and to validate its structure and content. Subgraphs of the meta-
graph, with attribute values specifying regular expressions which must be matched by the
corresponding graph element attributes, also serve as query templates to be matched by
the graph.

A modelling framework which supports the creation, manipulation and querying of an
attributed graph has been developed to underpin the CLOVIS component infrastructure.
For both generality and consistency with other meta modelling languages, such as the
Unified Modelling Language (UML) [25], this framework also supports additional features
such as meta-element inheritance, and edges incident on other edges. Discussion of these
features is however beyond the scope of this paper.

3.2 Layout Composition Framework

The Layout Composition Framework (LCF) is a component-based software framework
which supports.the creation and modification of highly flexible and customisable layouts
of an attributed graph. Composition of layouts is achieved through: the specification of
a hierarchy of containers which are to be displayed nested, as in a Tree-Map [13]; the
allocation of a layout strategy to each container; and the allocation of graph vertices to
containers. These three tasks are performed during the sense-making process of knowledge
crystalllisation using the layout composition specification editor, which will be discussed
shortly. Container indentation, as used in a Nested Tree-Map, ensures direct manipulation

DSTO-RR-0216

access to the internal nodes of this hierarchy, which will be exploited for navigation and
elision of the container hierarchy. Although container indentation results in a modest loss
of screen real estate available for the layout of graph vertices, this loss is expected to be
more than compensated by the increased freedom to choose what is displayed.

3.2.1 Layout composition tree

The hierarchy of containers can be modelled as a layout composition tree, whose leaf
nodes correspond to visible graph vertices and whose non-leaf nodes correspond to contain-
ers. In order to simplify both the implementation and discussion of this tree, we note that
a visible graph vertex can be thought of as an empty, visible container with a "null" layout
for its (non-existent) contents. Each node of the tree specifies a layout rule, which dictates
the appearance of the corresponding container and the layout of its contents. In order to
avoid having to individually specify identical layout rules for a set of sibling containers
which are to be assigned the same appearance and layout, a suitable shorthand notation
is warranted. The LCF provides this shorthand for the case where a container is to be
generated for each vertex in the result set of a query, specified by a selection expression,
on the attributed graph. For this purpose, each layout rule is augmented with a selection
expression, the result set of which can be optionally fused into a single, synthetic vertex
if only a single container is required.

To illustrate the application of this shorthand notation, consider the case of an at-
tributed graph which models the file system of a computer, and has vertices with the
meta-names "file" and "directory". A single layout rule with a selection expression based
on the "sub-directory" edges from the "directory" vertices can be used to generate contain-
ers with identical layout and appearance corresponding to the subdirectories of a specified
directory. In a similar model which contains only "file" vertices, a single container for the
contents of the directory of interest could be created using a layout rule with a selection
expression based on the "pathname" attribute of these "file" vertices. Here the fusion
option would be chosen in order to produce a single container. Elision of the contents of
this directory would be achieved by failing to specify any subordinate layout rules.

Since the selection set of a parent layout rule can be copied to its children at no cost, the
use of selection expressions in all layout rules neither imposes unnecessary query evaluation
effort nor restricts the range of layouts which can be specified. It does, however, provide
the means by which the efficiency of query evaluation, and the economy of specification
effort, can be increased, by allowing the user to specify shared partial queries once in an
ancestor layout rule, rather than multiple times in its descendants. Evaluation efficiency is
also increased by explicitly anchoring one or more meta-vertices of the selection expression
in the selection set of the parent layout rule, since the number of potential matches for each
anchored vertex is reduced by the ratio of the size of the selection set to the total number
of vertices in the attributed graph. If none of the anchored meta-vertices matches the
selection set, then the result set must be empty and evaluation need proceed no further.

The layout composition specification editor shown in Figure 1 consists of the layout
composition tree (left) and the layout rule customiser (right). Each node in the tree
contains a layout rule for the corresponding container, the details of which are specified in
the right-hand panel of Figure 1. The layout strategy for the selected layout rule is chosen

KägView Specification

■"■ Root
? sK Messages

A Message
9 S Entities and Periods

? "4 Entities
O Entity

9 ill Periods
Q Period

• Add Entry X Delete

DSTO-RR-0216

Messages

Selection... D Visible |J Replicated Style: [defaults] LJ

fä&Mffli Si Array [gSJ||jmn , ^ Spring ! A Tfee| jjfione]

Columns:

Horizontal Gap:

Cell Width—

35 I □ Wrap Columns

Vertical Gap:

Cell Height

5.0 5.0

E Auto Width

Min: 10.0 Max: 150.0

E Auto Height

Min: 10.0 Max: 50.0

OK Cancel

Figure 1: Layout composition specification window.

by selecting the appropriate tab in the layout rule customiser, and its parameters specified
using the layout strategy customiser in the corresponding tab pane. In the example in
Figure 1, the details of the "Messages" rule, corresponding to the array layout of triangular
objects in the CLOVIS view of Figure 2, are shown. An array layout strategy has been
selected, and the array width and vertex spacing specified. The interested reader is referred
to Section 4.3 for an explanation of the content and application of the CLOVIS view in
Figure 2. Other application examples are also included in Section 4.

The "Selection" button in Figure 1 invokes the selection expression editor shown in
Figure 3, which facilitates the construction, by direct manipulation, of a subgraph of the
meta-graph to be used as a query template. The vertices, edges and attributes of the
meta-graph listed in the left-hand panel of Figure 3 can be dragged and dropped into the
selection expression canvas on the right. The selection expression is matched against the
underlying attributed graph, and for each match, the graph vertices corresponding to the
checked meta-vertices are placed in the selection set of the current layout rule. In this
example, the selection expression will match vertices having the meta-name "message",
the "channel" attribute "VOICE", "DATA", "DICEJLink" or "To Controller", and which
are connected to vertices having the meta-name "root" by a directed edge having the
meta-name "contains".

The layout composition specification dictates a clustering of a subset of the vertex
set which, despite its tree structure, need not be hierarchical. Sibling containers are not
required to make mutually exclusive selections, and a container is not required to select
a subset of its parent's selection. One consequence of these relaxations is that the same
vertex can be represented in multiple containers. In this case, vertex duplication is used
to preserve the container hierarchy, and hence also the two-pass layout approach to be

DSTO-RR-0216

0« fan yitw

riffiB^ÜÖ^«,!
VUiblai CMilw

13 Base

itf A* Message (low

B A Message count

B ,% Entitf names

ia : A Controller blue

B A Messages to Controller

a X Interval start time

12 A Interval pink

A Messages in interval

A Message content

«♦ mwsagt*Jn_ptrtod

OJL
stu«

value

A, value Display® In Shape

A Feature Name

.3» Fill Colour □ white

OOval

k Text Colour ■ Black

UneColour ■ Magenta

A Font

- Line End

dialog, 12. Regular

$' None

□ Margins 0.0.0.0.0.0.0.0

IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
FIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
üAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
"\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

LAAAAOOOOOOOOOOOOOOOOOOOOOOOOO»0000
)OO0OO00OO0«OO0O0OOO0O0O0OOO»OOAAAA
tAAAAAAAAAA&i» *u»>uri»u>iiAt AAAAAAA
LAAAAAAAAAAAaM80«M>EMTTIY/ca AAAAAAA
lAAAAAAAAAAA; AAAAAAA
,AAAAAAAAAAAiD-MOOIFyi3Bf29O00Aa.887129.5967700» AAAAAAA
iAAAAAAAAAAA4 AAAAAAA
'44&AAAAAA4,^^D-«,PENDöm«««>»-»« 132.381500» &AAAAAA
luaMuAaAAAAZmuMuuuuuMuuuuuu AAAAAAA
lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/:[S
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI

0

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI
&AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ
IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ
AAA

JMS

Figure 2: CLOVIS view of message traffic.

discussed shortly.

Since the user is free to define an hierarchical clustering if required, the set of possible
CLOVIS views subsumes clustered graph layouts. The visualisation of a directory structure
is an example of an hierarchical clustering in which the selection set for the directory
container - a single "directory" vertex - is nevertheless not a superset of the selection
set - consisting of "file" vertices - for the subordinate container which holds its non-
directory contents. This freedom, to select any set of graph vertices which are reachable
by an undirected path through the attributed graph from the selection set of the parent
layout rule, can be exploited to produce non-hierarchical clusterings. Only in cases where
the attributed graph is disconnected is this approach more restrictive than that used in
Datasplash [7,6], for example, where any vertex can be allocated to a container.

3.2.2 Layout strategies

The layout of the contents of a container is determined by a layout strategy, which is
selected by choosing a tab in the layout rule customiser shown on the right of Figure 1.
The term "layout strategy" acknowledges the "strategies" software pattern [14] which is
common in user interface design. To illustrate the variety of layouts supported by the
Layout Composition Framework, we classify existing layouts into one of three categories:
graph, attribute or blind.

A graph layout reflects or is derived from the graph structure rather than the vertex or

10

DSTO-RR-0216

&5 Selection

(♦ element
! ? ♦ entity
| ■> messages_from_me
! ■> messages_to_me
j 9 ■♦ sendsjo
i A count

A name
i ? ♦ message

*¥ from
•¥ in
■4 to

j A channel
| A content
I A received

A sent
<? ♦ period

■4 messages_in_period
A duration
A message_count
A start

9 ♦ relation
$ ♦ entity.sendsjo.entity

A count
A moocano

□ message

□ O channeK«VOICE|DATA|DICE_Unl<|(ro Controller«

OK Cancel

Figure 3: Selection expression editor window.

edge attributes. The LCF subsumes conventional graph drawings, since the user is free to
define a single container with a graph layout involving all of the graph elements. However,
the computational complexity of graph layouts (which may be 0(n2) or 0(rilogn) for n
vertices) is typically offset by the reduction in the size n of the vertex set to which it is
applied. For example, the spring embedder [26] graph layout in Figure 2 is applied only
to the red vertices, which correspond to the communicating entities in a simulation of a
military messaging system. In the prototype CLOVIS implementation, graph layouts make
use of the edges, if any, which are included by one or more currently-visible visual sets.

An attribute layout is based on the vertex attributes. A scatterplot (see e.g. [11]) with-
out axes is an example of an attribute layout for numerical attributes. Similarly, ordinal
attributes could be used to create an array in which not necessarily all cells are occupied
by vertices of the original graph. An attribute layout typically has linear complexity,
although more complex layouts in this class are also possible, such as those based on
multidimensional scaling (see e.g. [10]) of a "distance" measure representing inter-vertex
attribute dissimilarities.

A blind layout ignores both the structure and attributes of the attributed graph, and
lays out the vertices according to a pre-determined but usually regular pattern, such as
a (linear) flow, array or circular arrangement. For example, the alternation of horizontal
and vertical flow layouts at successive levels of the layout composition tree produces the
loose approximation to a Nested Tree-Map shown in Figure 4. This third layout category
primarily includes layouts which have computational complexity linear in the number of

11

DSTO-RR-0216

Figure 4: Simple, rapidly prototyped CLOVIS approximation to a Nested Tree-Map.

vertices to be laid out, and hence are more scalable than graph layouts. A random layout
would also fall into this category. Many blind layouts also have linear spatial complexity
(or inverse linear resolution), while still guaranteeing that vertex occlusion will not occur.
This compactness is especially valuable for summary views of a large number of vertices,
such as the triangular "message" vertices in Figure 2. The compactness of many blind
layouts should be contrasted with the relatively inefficient use of space in conventional
graph drawing, as bemoaned in [13]. Nevertheless, this category also includes some layouts
with poor computational or spatial complexity. For example, a circumferential layout
requires the use of suitable heuristics in order to give reasonable results in linear time (see
e.g. [27,26]), and has quadratic space complexity.

Distinguishing between the graph, attribute and blind layout categories has served to
illustrate the variety of existing layouts which are currently or readily supported by the
Layout Composition Framework (LCF). However, the LCF does not preclude the use of
hybrids of these categories, or even layouts which fall outside of the categories. Entire
classes of layouts not previously considered in the literature are therefore possible, such as
graph layouts which prioritise the removal of edge crossings on the basis of edge attributes.

Each layout strategy is implemented in the LCF as a software component, which can
be plugged in as required at either compile or run time. Each strategy has a corresponding
tab in the layout composition specification window, and a layout strategy customiser in
the associated tab pane, as shown in Figure 1. Consequently, the choice of layout strategy

12

DSTO-RR-0216

for a given container is independent of that for all other containers. In the following sub-
section, we discuss how the actions performed by the layout strategies assigned to each
container are coordinated to produce the resultant CLOVIS view.

3.2.3 Layout coordination

In the case of the Tree-Map, the relative area to be occupied by each tree node is
pre-specified by the data, such as file size, which it represents. The generalisation of
container layouts supported by the CLOVIS infrastructure necessitates an additional pass
through the tree, during which containers and vertices bid for the space they require.
Space allocation is then performed during the second pass, with containers having to
"make do" with the space allocated to them. Further iterations of the bidding-allocation
cycle could potentially result in more efficient use of the available space. For example,
given insufficient space by the first round of allocations, a container might choose to elide
its contents and revise its bid accordingly during a third pass; a fourth pass would then
re-allocate the real-estate freed up by this elision. However, in order to retain interactivity
when scaling up the LCF approach to large data sets, we have chosen not to pursue this
option.

During the layout of a CLOVIS view, the layout strategy for each container is responsible
for:

Pass 1 optionally asking its child containers for their preferred size given the specified
maximum size of the root container, and reporting its own preferred size to its
parent (if any)

Pass 2 laying out its own content, notifying its child containers of their allocated size
and position, and triggering them to lay out their content.

The root container, corresponding to the root node of the layout composition tree, is the
outermost container in a CLOVIS layout. Passes 1 and 2 are triggered, respectively, by
asking the root container for its preferred size and, upon receiving the answer, triggering
its layout. The maximum permissible size of the root container is specified in advance,
and the minimum of this and its preferred size is used in the second pass.

Container layouts must be calculated in each pass - first to determine the preferred
container size and then to perform the actual layout. For containers which are granted
less than their preferred size, the area granted to them could be used as a window onto a
larger underlying canvas, in the style of Datasplash portals. The current implementation
of the LCF is based on two-dimensional views, although the nesting of containers with
individualised layouts extends naturally to 3D. Each layout strategy should be responsible
for its own extension to 3D, since while many layouts, such as the array, generalise readily
to accommodate the third dimension, others, such as a text layout [28], may need special
consideration.

13

DSTO-RR-0216

3.3 Visual Sets

Each layout rule selects a subset of the graph vertices and, in addition to specifying
a layout strategy, assigns an appearance to the corresponding container(s). The ability
to assign a distinctive appearance to the result set of a visually formulated query on the
attributed graph provides a potentially powerful mechanism for the visual exploration of
the information it represents. The realisation of this potential requires the extension of
this visual querying facility beyond the layout phase of the visualisation, and the inclusion
of graph edges in query result sets. In CLOVIS visualisations, this extension is built on the
use of visual sets.

As previously noted, a visual set is a set of vertices or edges of the attributed graph
and a specification of their appearance. Membership of a visual set is specified implicitly

through the use of a query on the attributed graph, with the option to constrain the result
set in advance through direct manipulation selection. With the exception of position, any

aspects of the appearance of a vertex or edge can be specified in any combination for a
visual set.

Visual sets are defined in the CLOVIS prototype infrastructure using the Features panel
shown on the left of Figure 5. The vertex or edge attribute on which membership of the
visual set is to be based is selected from the tree view of the meta-graph in the top
half of the panel. The mapping of this attribute to the appearance of the corresponding
graph elements is then specified using the pattern and style specification tables shown in
the middle and lower half of the "Features" panel respectively. Each row of the pattern
specification table corresponds to a separate visual set, defining a pattern to be matched
by the selected attribute for each graph element in the set, and the visual style to be
assigned to the matched graph elements. If no pattern is specified, all elements bearing
the selected attribute are affected by the corresponding style. If more than one row is
specified in the pattern specification table, it is convenient for some purposes to treat the
corresponding collection of visual sets as a single, compound visual set. The visual style
to be applied to the members of a visual set is specified using the style specification table,
and the resultant specification indicated in shorthand in the right-hand column of the
pattern specification table.

The pattern and style specification tables together provide a flexible user interface for
the exploration of the large range of possible mappings between attribute values and visual
appearance. For example, a mapping of temperature to colour can be specified using a
series of rows in the pattern specification table, each of which matches a different tem-
perature range and assigns the corresponding colour. There is nevertheless considerable
scope for the addition of shorthand mechanisms for the specification of such mappings,
especially where numerical attributes are to be mapped onto finely-quantised values for
visual attributes such as size or intensity.

Since multiple visual sets can be defined for the same view, the CLOVIS infrastructure
provides a number of facilities which assist the user with their management. These facili-
ties include allowing the user to specify descriptive names for each visual set, re-order the
list, delete those which are no longer required, and turn each on and off. The left-hand
"Overlays" panel in Figure 2 displays the list of overlays defined for the corresponding
view on the right. Replacement of this list with a tree in a future extension of our pro-

14

DSTO-RR-0216

totype CLOVIS implementation would facilitate the management and navigation of larger
collections of visual sets, which would be organised hierarchically and labeled according
to the line of enquiry being pursued. For example, the multiple visual sets defined in
the above example to achieve the temperature-colour mapping would be grouped under a
single parent node.

The process of constructing complex queries is rarely achieved in a single step. The
exploratory data analyst will typically build increasingly sophisticated versions of one
or more queries as their understanding of the data set evolves. Even in cases where the
objective is clearly stated in advance, a user may wish to view intermediate results in order
to ensure that the completed query will meet that objective. Visual sets offer this feedback
in an easily-assimilated visual form. In Figure 2, for example, three separate visual sets
have been applied to the orange triangles on the left of the view: a blue fill, a circular
shape with magenta outline, and a tooltip. Members of the intersection set of the first two
are readily apparent as blue hexagons with magenta outline. If this set is of interest, it
can be targeted more selectively and highlighted more effectively by defining a new visual
set which logically ANDs the two corresponding queries. Alternatively, the two visual
sets could be combined set-theoretically, with the user specifying how the appearance of
the resultant visual set should be derived from that of its constituents. Implementation
of this option within the prototype CLOVIS framework would automate the otherwise
manual process of re-specifying and logically combining the underlying queries. Of course,
the combination of visual sets is not limited to the intersection set, which corresponds
to the logical AND of the corresponding queries: any Boolean combination of queries
corresponds to a suitable set-theoretic combination of their respective result sets.

In some applications it may be important to place the result of a complex query in
the context of intermediate results. For example, Figure 2 shows an intersection set in
the context of the two individual sets, allowing set size and membership comparisons. At
first glance, there would seem to be a combinatorial space of possibilities for the simul-
taneous display of these intermediate results. However, several factors conspire to limit
the amount of contextual information which can be effectively displayed. Firstly, two or
more overlapping visual sets should not attempt to dictate conflicting settings for the same
visual attribute. Secondly, some attributes are less salient than others to the pre-attentive
vision, potentially requiring the user to resort to a visual search to identify set member-
ship. And thirdly, the visual attributes available for use are not necessarily perceptually
"orthogonal"; for example, the choice of colour can affect the perception of size.

In cases where the size, shape or visibility of graph vertices or edges changes as a result
of the application of a visual set, the layout of a CLOVIS view may need to be updated at
the user's discretion. Automated recognition of the need for a layout update, combined
with the current animation of the layout changes resulting from the update, would assist
the user in concentrating on the task at hand and preserving their mental map.

3.4 Summary

The flexibility of Composable Layout and Visual Set (CLOVIS) views arises from:

1. the large number of possible layout composition trees, including choices of

15

DSTO-RR-0216

• allocation of vertices to containers

• container layout (layout type and parameter choice)

• layout composition tree structure

• edge sets for use in graph layouts

2. the large number of possible visual sets, including choices of

• query-based set membership criteria

• visual appearance

A description of each of these variables, and the interface through which they are specified,
has been provided in this section.

The approach taken by the Layout Composition Framework to the reduction of compu-
tational and space complexity for the layout of attributed graphs has also been described.
This approach involves a combination of divide-and-conquer, the use of compact, low-cost
layouts where appropriate, an efficient two-pass layout algorithm, and elision of unwanted
detail.

4 Applications

In this section, the versatility of the CLOVIS view family is demonstrated through
its application to the visualisation of the In Vision component architecture, a file system,
message traffic, and importation relationships between Java classes.

4.1 In Vision framework

Figure 5 provides an overview of the InVision component-based software architecture
for the assembly and deployment of information visualisation solutions. The In Vision ar-
chitecture supports the integration and coordination of a variety of view types, including
CLOVIS and chart views. Unlike other visualisation architectures with this design goal,
however, InVision will also provide for their effective deployment as part of a visualisation
solution through support for: the location and extraction of the information to be visu-
alised from the information environment; interoperation with existing information tech-
nology tools and services; integration with user processes and organisational workflows;
and user assistance.

The principal role of the CLOVIS view within the In Vision framework is as a general-
purpose view which is readily and iteratively customised to meet the user's specific visual-
isation requirements. Unlike statistical and graph visualisation techniques, respectively, it
assumes neither numerical attributes nor the existence of graph edges, although it is able
to exploit them when present. The view in Figure 5 was designed to meet the require-
ment of a visualisation software developer or integrator for an accurate and up-to-date
architectural description of In Vision which not only shows logical design structure but
also implemented code elements. Additional detail such as class names can be added as
needed using visual sets.

16

DSTO-RR-0216

<5 InVtsian - woikspace

fl\e Edit View Help

<\ •411 !►! ±J ■ : m
Target \

App

rtew: «current> •w

rtay: Imports 1 ^
ty to: Relation ■w

Modelling ooo ooo leeo ooo ooo ooo ooo ooo oo

><QO<ZOCZ><CZ><^><^>J

| Toggle whether the active view is floating

Figure 5: In Vision component architecture.

Figure 5 shows a CLOVIS view of the attributed graph obtained by parsing the Java
source code of the InVision component infrastructure for its package and class structure.
The components and their composition are represented, respectively, by the containers and
the pattern of their nesting. The containers, shown as rectangles with rounded corners,
are colour-coded to facilitate the rapid appreciation and comparison of nesting depth.
The classes, many of which are JavaBean components (see e.g. [29]), are shown as white
hexagons. Their allocation to containers is achieved using selection expressions which
filter on the "name" attribute of the "package" vertices to which they are attached by a
"contains" relation. The directed importation relationships of the LayoutRule class are
overlaid as a visual set.

The prototype CLOVIS infrastructure consists of the following InVision components
in Figure 5. The Modelling framework supports the instantiation and management of
the attributed graph to be visualised. Among its components is the Query framework,
which provides for the specification and execution of queries on the graph. The CLOVIS

framework, a component of the Views framework, includes the Layout Composition Frame-

17

DSTO-RR-0216

work (LCF) described in Section 3.2, and the user interface for specification of the layout
composition tree. The LCF incorporates layout coordination and plugin layout strategy
components. Visual sets are implemented by the Overlay Management component of the
User Environment framework.

The Views framework, is responsible for the coordination and integration of the various
views supported by InVision. In addition to the CLOVIS view, a Chart view adapted from
the JChart JavaBean is provided, while placeholders are shown for text, table and other
views which will be implemented in the near future.

Within the User Environment framework, the Workspace framework provides support
for user workspaces, which facilitate the organisation of views, data models, processes
and user agents. The Process and Monitoring components will provide for the recording,
playback and management of user interaction sequences involved in creating or interacting
with views. An implementation of this functionality for the Visage database visualisation
tool, and an associated user interface, are described in [30]. The Agent Support frame-
work will allow the registration and invocation of agents which assist the user with the
specification, refinement and interpretation of views and the location and extraction of
the required information from the information environment.

Within the Modelling framework, the Exploration framework will provide for software
agent exploration of the information environment, and the Collection framework for the
extraction of that portion of the discovered information which is relevant to the user's vi-
sualisation requirements. Since the required information will in general need to be derived
or distilled from the extracted information, information analysis and fusion frameworks
are also slated.

4.2 Directory structure

Figure 4 shows a simple CLOVIS approximation to a Nested Tree Map of a file sys-
tem, in which the leaf nodes corresponding to (non-directory) files are displayed as white,
rounded rectangles. File and directory names, which are visible in the magnified lens
view to the right, have been overlaid using a visual set. As in the Nested Tree Map, the
nesting of containers, which use alternating horizontal and vertical flow layouts and are
distinguished by different fill colours, indicates the corresponding nesting of directories.
In contrast, however, the area occupied by a directory is dependent upon (although not
directly proportional to) the total number of files and directories in the subtree rooted at
that directory, rather than proportional to their total byte size.

Of course, more efficient use of the available space could be made by for example
reducing the spacing between leaf nodes in the same container and using a layout strategy
with more flexible wrapping. Nevertheless, the goal of simultaneous display of detail at
all levels of an arbitrarily deep tree remains unattainable. Elision of directory content at
the seventh level of nesting, distortion via a magnifying lens, and container navigation
support are used here to circumvent this problem. More tailored Tree Map interfaces for
browsing directory structure, such as that proposed in [31], might in future result from
the use of the InVision infrastructure for rapid prototyping of the corresponding CLOVIS
views.

18

DSTO-RR-0216

4.3 Message traffic

Figure 2 shows the communicating entities, the messages exchanged between them,
and each 100-second time interval during the simulation of a military messaging system.
The communicating entities are represented as red hexagons, and are laid out using a
spring-embedder graph layout based on the communication relations between them. In
the magnified lens window, a message-count attribute can be seen overlaid on one of these
edges. The direction of the magnified edge reveals that the "Pilot" entity sends messages
to the "Controller", but receives none in return. The messages and simulation intervals are
shown as orange triangles and green cylinders respectively, and are arranged in separate
containers with array layouts. The messages sent to the blue "Controller" entity are
assigned a corresponding blue fill by a visual set which selects edges with the meta-name
"messages_from_me", and applies the specified visual style to the vertices on which they
terminate. Similarly, the messages transmitted during the pink interval are shown as ovals
with a pink outline. There are three messages (blue ovals) in the intersection of these two
visual sets. The content of one of these messages is shown in a tooltip overlay.

4.4 Software structure

Figure 6 presents a CLOVIS view of the Java-based In Vision software framework. The
classes, shown as hexagons, are assigned to columns on the basis of the importation rela-
tions between them, such that if class A imports class B, then class B is either in the same
column or to the right of A. The more highly imported classes are thereby "pushed" to
the right. Classes belonging to one or more overlapping importation cycles are allocated
to contiguous rows of the same column, and assigned an orange fill. The directed impor-
tation relations for the "IveWindow" class are overlaid in blue. One of these points to
a class which is part of a cluster of overlapping cycles involving classes from the CLOVIS
view software. The pattern of importation relations among the classes in this cluster is
shown using a spring-embedder graph layout in a linked CLOVIS view. This view confirms
the presence of multiple importation cycles, which form indivisible units from the point of
view of code re-use, and identifies the "ClovisModel" class as central.

In past work involving the development and deployment of the See AD A [32,33] software
visualisation tool at a large Defence software contractor, the map-like, "coastal" outline
and "topographic" features of this view provided convenient landmarks against which
day-to-day changes in software structure were readily identified by the user.

4.5 Summary

In this section, the versatility of the CLOVIS view and of the underlying attributed
graph information model has been demonstrated through a series of case studies showing
its application in a variety of problem domains. The ease with which these example views
were prepared through the user interface furthermore confirms the utility of the In Vision
infrastructure for the rapid prototyping of views in the CLOVIS view family.

19

DSTO-RR-0216

File fdlt vie*
1-IOIXll

A Features fgS§fi3
I'sajpatMiyw

^ im portedBy

•* imports

■4 subclasses

■4 superclass

A author

A cluster

A methods

A modified

A statements

A version

A name

A nam«

i®£
style

IMl
&, Value Display <g) Not Displayed

A Feature Name D
ft Shape □ Rectangle

I Red

.A, Text Colour fl Black

tj£ Ljna^Colour H Blacky

Target view; | <current>

grerlay: jname 3

Apply to:

Figure 6: CLOVIS views of Java-based software.

5 Future Work

A number of areas of future investigation for CLOVIS views have been identified in
previous sections. In this section, we survey some of the major challenges and research
opportunities for the future development of CLOVIS views and the supporting framework.

Navigation through the container hierarchy is currently supported by the ability to
zoom into a selected container while leaving sufficient surrounding context to be able to
also select its parent. This might be supplemented by a host of other tree navigation
techniques, including the ability to: elide the content of containers through direct manip-
ulation (without changing the layout composition specification); jump directly back to the
previously-zoomed container; and add containers to a list of bookmarks for future direct
access.

Interactive elision of the contents of a container will in general require an update to the
view layout. Layout updates can be optionally animated to help preserve the user's mental
map. The animation component and the techniques it currently provides are described
in [22]. At present, the animation deals only with the leaf nodes of the layout composition
tree, being unaware of their surrounding containers. However, the appropriate choice of
animation technique and its parameter settings will in general vary between containers.
For example, a container having a graph layout whose goal is to maximise symmetry may
require an animation technique which optimally preserves this symmetry during the tran-

20

DSTO-RR-0216

sition. This goal may conflict with that of another container, which seeks to optimise and
preserve the compactness of its layout. The facility to specify and customise per-container
animation strategies would therefore seem appropriate. However, tying animation to con-
tainers raises a number of issues. For example, how would a vertex which moves between
containers as a result of changing selection expressions be animated? Although this might
be handled by the first common ancestor of the two containers, the layout of that ancestor
currently knows nothing of the content of the two containers.

Clustering support in CLOVIS views is currently limited to the use of manually-specified
queries for each container. These queries, and indeed the entire layout composition specifi-
cation, could in future be generated automatically by a user-selected clustering algorithm
which is applied to the attributed graph. The range of available clustering algorithms
should extend beyond conventional structure-based graph clustering to attribute-based
and hybrid clustering methods. A framework which allows the user or software developer
to "plug in" the required clustering algorithms as components would assist with their
management.

In the Layout Composition Framework, a container having an attribute or graph layout
should be entitled to rely on its subordinate containers having attributes and relations
respectively. In cases where a container corresponds to a single graph vertex, this will
indeed be the case. However, if a container represents more than one vertex, then a strategy
for fusing the corresponding vertex attributes, edges and edge attributes is required. This
strategy may vary depending on the attribute type and the meaning of the attribute. It
may for example be appropriate to take the mean value for a numerical attributes in some
situations, and the maximum or concatenation in others. The specification of this fusion
strategy should either form part of each layout rule, or be specified in the underlying
attributed graph model. Elision of the content of a container should result in the removal
of hanging links and the display of the corresponding fused edges terminating on the
container. In addition, the user should be provided with the option of making these fused
attributes invisible to queries, so that for example the same edge is not shown terminating
on a graph vertex and its parent container.

Although there is scope for the development of novel vertex layout strategies within the
graph, attribute and blind categories identified in Section 3.2.2, much greater opportunities
exist for the invention of hybrid techniques. Examples include: graph layout techniques
which prioritise the removal of edge crossings or vertex occlusions on the basis of the
attributes of the corresponding graph elements; attribute layouts which use synthetic edge
attributes derived from graph-theoretic metrics such as path distance; and blind layouts
which re-order vertices to optimally preserve some measure of vertex proximity.

The encapsulation of a layout composition tree within a macro which presents a user
interface for only a subset of the layout strategy, selection expression and visual style
parameters to the more time-constrained user would trade off customisation flexibility for
the time required to fully specify a view. The addition of a shorthand mechanism for
specifying recursive structures in the layout composition tree - such as that a directory
contains files and directories - would also reduce the time required to specify a view.

When specifying a visual set, the user is currently provided with the ability to specify
a query on the selected edge or vertex attribute. In future, the visually-specified, graph-
based query mechanism provided for selection expressions should be made available for

21

DSTO-RR-0216

the more flexible specification of visual sets. This query mechanism is currently being
extended to permit more advanced queries involving sorting, aggregation and the creation
of synthetic attributes. In future it will also need to support the Boolean combination of
queries specified on partially overlapping subgraphs.

It is currently left to the user to choose without restriction the visual styles associated
with each visual set from the set of all possible styles. Consequently, the styles applied
to a vertex or edge are not necessarily perceptually "orthogonal", so that for example the
choice of colour can affect the perception of size. Contradictory settings of the same visual
attribute are also possible. The provision of palettes of visual attribute combinations, or
agent-based support for the choice of visual attributes, could be used to overcome this
problem.

6 Conclusion

In this paper we have presented the CLOVIS view family for visualising information
which can be modelled as an attributed graph. A user interface for creating and inter-
acting with CLOVIS views has been described, and the supporting InVision component
infrastructure outlined. A framework for composing layouts has been presented, including
the responsibilities of the layout strategy and the mechanism for coordinating the execu-
tion of layouts. The versatility of the CLOVIS view family was demonstrated in Section 4
through its application to a variety of problem domains, and future research directions
identified in Section 5.

References

1. Herman, I., Melancon, G. & Marshall, M. S. (2000) Graph visualization and naviga-
tion in information visualization: A survey, IEEE Transactions on Visualization &
Computer Graphics 6(1), 24-43.

2. Card, S. K., Mackinlay, J. D. & Shneiderman, B., eds (1999) Readings in Informa-
tion Visualization: Using Vision to Think, Morgan Kaufmann Publishers, Inc., San
Francisco, California.

3. Fairchild, K. M., Poltrock, S. E. & Furnas, G. W. (1988) SemNet: Three-dimensional
graphic representations of large knowledge bases, in Cognitive Science and its Appli-
cations for Human-Computer Interaction, pp. 201-233.

4. Eick, S. G. & Wills, G. J. (1993) Navigating large networks with hierarchies, in Proc.
IEEE Visualization '93 Conf, pp. 204-210.

5. Kolojejchick, J., Roth, S. & Lucas, P. (1997) Information appliances and tools in
Visage, IEEE Computer Graphics and Applications.

6. Olston, C, Woodruff, A., Aiken, A., Chu, M., Ercegovac, V., Lin, M., Spalding, M. &
Stonebraker, M. (1998) Datasplash, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, WA, pp. 550-552.

22

DSTO-RR-0216

7. Olston, C, Stonebraker, M., Aiken, A. & Hellerstein, J. (1998) VIQING: Visual Inter-
active QueryING, in Proceedings of the 14th IEEE Symposium on Visual Languages,
Halifax, Nova Scotia, Canada.

8. i2 (2000) Analyst's workstation, http://www.i2group.com/products/anw/index.htm.

9. Hartmann, S. (1995) Graph-theoretical methods to construct entity-relationship
databases, in M. Nagl, ed., Graph Theoretic Concepts in Computer Science: Pro-
ceedings of the Twenty-First International Workshop, Vol. 1017 of Lecture Notes in
Computer Science, Springer-Verlag, Aachen, Germany.

10. Cox, T. & Cox, M. (1994) Multidimensional Scaling, Chapman Hall, London.

11. Tufte, E. R. (1983) The Visual Display of Quantitative Information, Graphics Press.

12. Furnas, G. W. (1997) Effective view navigation, in Proc. CHI'97, ACM Conference
on Human Factors in Computing Systems, Atlanta, Georgia, pp. 367-374.

13. Johnson, B. & Schneiderman, B. (1991) Tree-maps: A space-filling approach to the
visualization of hierarchical information structures, in Proc. IEEE Visualization '91
Conf, IEEE CS Press, pp. 275-282.

14. Geary, D. M. (1997) Graphic Java 1.1: Mastering the AWT, The Sunsoft Press Java
Series, second edn, Sun Microsystems Press, chapter 14.

15. Bertault, F. (1995) Adocs: A drawing system for generic combinatorial structures, in
F. Brandenburg, ed., Symposium on Graph Drawing, Vol. 1027 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 24-27.

16. Marshall, M., Herman, I. & Melancon, G. (2000) An Object-Oriented Design for
Graph Visualization, Technical Report INS-R0001, Centre for Mathematics and
Computer Sciences, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.
http://www.cwi.nl/InfoVisu/papers/INS-R0001.pdf.

17. Feng, Q. (1997) Algorithms for Drawing Clustered Graphs, PhD thesis, The University
of Newcastle, Department of Computer Science & Software Engineering.

18. Kimelman, D., Leban, B., Roth, T. & Zernik, D. (1994) Reduction of complexity
in dynamic graphs, in Proceedings of the Symposium on Graph Drawing GD '93,
Springer-Verlag.

19. Huang, M. & Eades, P. (1998) A fully animated interactive system for clustering and
navigation of huge graphs, in S. Whitesides, ed., Graph Drawing 98, Lecture Notes in
Computer Science 1547, Springer-Verlag, pp. 374-383.

20. Kamada, T. (1989) Visualizing Abstract Objects and Relations: A Constraint-based
Approach, Vol. 5 of Series in Computer Science, World Scientific.

21. Ahlberg, C. & Wistrand, E. (1995) IVEE: An information visualization & exploration
environment, in Proceedings of IEEE Symposium on Information Visualization.

22. Friedrich, C. & Eades, P. (2000) The Marey graph animation tool, in Proceedings of
Graph Drawing 2000.

23

DSTO-RR-0216

23. Pattison, T., Vernik, R., Goodburn, D. & Phillips, M. (2001) Rapid Assembly and
Deployment of Domain Visualisation Solutions, Technical Report DSTO-TR-1100,
Defence Science & Technology Organisation.

24. Melamed, B. (1998) Design and Implementation of an Attribute Manager for Con-
ditional and Distributed Graph Transformation, Master's thesis, Computer Science
Department, Technical University of Berlin.

25. Object Management Group (1999) OMG Unified Modeling Language specification,
http://www.omg.org/technology/uml/. version 3.

26. di Battista, G., Eades, P., Tamassia, R. & Tollis, I. (1999) Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall.

27. Melangon, G. & Herman, I. (1998) Circular drawings of rooted trees, Technical Report
INS-R9817, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

28. Knuth, D. E. (1984) The TßXbook, Addison-Wesley, Reading, Mass.

29. Vanhelsuwe, L. (1997) Mastering JavaBeans, Sybex.

30. Derthick, M. & Roth, S. F. (2001) Enhancing data exploration with a branching
history of user operations, Knowledge Based Systems 14(1-2), 65-74.

31. Vernier, F. & Nigay, L. (2000) Modifiable treemaps containing variable-shaped units,
in T. Ertl, B. Hamann & A. Varshney, eds, CD-ROM Proceedings of the IEEE Visu-
alization 2000 Conference, IEEE, IEEE Press, Salt Lake City, Utah.

32. Vernik, R. & Burke, M. (1993) Perspective-oriented description: Integrating and tai-
loring information for software engineering, in Proceedings of Sixth Conference on
Software Engineering and its Applications, Paris, France.

33. Vernik, R. J. (1996) Visualisation and Description in Software Engineering, PhD the-
sis, Dept. Computer and Information Science, University of South Australia, Adelaide,
South Australia.

24

DISTRIBUTION LIST

Information Visualisation using Composable Layouts and Visual Sets

Tim Pattison, Rudi Vernik & Matthew Phillips

DEFENCE ORGANISATION

Task Sponsor

Director General C4

Deputy Director, Battlespace Digitisation

S&T Program

Chief Defence Scientist

FAS Science Policy

AS Science Corporate Management

Director General Science Policy Development

Counsellor, Defence Science, London

Counsellor, Defence Science, Washington

Scientific Adviser to MRDC, Thailand

Scientific Adviser Joint

Navy Scientific Adviser

Scientific Adviser, Army

Air Force Scientific Adviser

Director Trials

Aeronautical and Maritime Research Laboratory

Director, Aeronautical and Maritime Research Laboratory

Electronics and Surveillance Research Laboratory

Director

Chief, Information Technology Division

Research Leader, Military Information Enterprise Branch

Research Leader, Advanced Computer Capabilities Branch

Research Leader, Command & Control and Intelligence
Systems Branch
Research Leader, Joint Systems

Head, Information Warfare Studies Group

Head, Enterprise Visualisation, Instrumentation &
Synchronisation Group
Head, Trusted Computer Systems Group

Number of Copies

Doc Data Sht

1

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

Doc Data Sht
& Dist List

Doc Data Sht
& Dist List

1

1

Doc Data Sht
& Dist List

Doc Data Sht

1

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

Doc Data Sht

Head, Systems Simulation and Assessment Group

Head, C3I Operational Analysis Group

Head, Information Exploitation Group

Head, Intelligence Group

Head, Human Systems Integration Group

Head, C2 Australian Theatre Group

Head, Distributed Systems Group

Head, C3 Information Systems Concepts Group

Head, Military Systems Synthesis Group

Head, Systems of Systems Group

Head, Operational Information Security Group

Head, Advanced Network Integrity Group

Publications & Publicity Officer, ITD |

Executive Officer, ITD J

Author

DSTO Research Library and Archives

Library Fishermans Bend

Library Maribyrnong

Library Salisbury

Australian Archives

Library, MOD, Pyrmont

US Defense Technical Information Center

UK Defence Research Information Centre

Canada Defence Scientific Information Service

NZ Defence Information Centre

National Library of Australia

Capability Systems Staff

Director General Maritime Development

Director General Aerospace Development

Knowledge Staff

Director General Command, Control, Communications and Com-
puters (DGC4)

Director General Intelligence, Surveillance, Reconnaissance and
Electronic Warfare (DGISREW) R1-3-A142 Canberra ACT 2600

Director General Defence Knowledge Improvement Team
(DGDKNIT) R1-5-A165, Canberra ACT 2600

Doc Data Sht

Doc Data Sht

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

Doc Data Sht

1

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

1

10

Doc Data Sht

Doc Data Sht

1

1

Doc Data Sht

2

2

1

1

1

Doc Data Sht

Doc Data Sht

Doc Data Sht

Doc Data Sht

Doc Data Sht

Army

Stuart Schnaars, ABCA Standardisation Officer 4
Tobruk Barracks, Puckapunyal VIC 3662

SO (Science), Deployable Joint Force Headquarters (DJFHQ)(L) Doc Data Sht

Intelligence Program

DGSTA, Defence Intelligence Organisation 1

Manager, Information Centre, Defence Intelligence 1
Organisation

Corporate Support Program

Library-Manager, DLS-Canberra 1

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library 1

Head of Aerospace and Mechanical Engineering, ADFA 1

Deakin University Library, Serials Section (M List) 1

Hargrave Library, Monash University Doc Data Sht

Librarian, Flinders University 1

OTHER ORGANISATIONS

NASA (Canberra) 1

Auslnfo 1

State Library of South Australia 1

Parliamentary Library of South Australia 1

ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, US 1

Materials Information, Cambridge Scientific Abstracts, US 1

Documents Librarian, The Center for Research Libraries, US 1

INFORMATION EXCHANGE AGREEMENT PARTNERS

Acquisitions Unit, Science Reference and Information Service, 1
UK
Library - Exchange Desk, National Institute of Standards and 1
Technology, US

SPARES

DSTO Salisbury Research Library 5

Total number of copies: 58

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Information Visualisation using Composable Lay-
outs and Visual Sets

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Tim Pattison, Rudi Vernik & Matthew Phillips

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury, South Australia, Australia 5108

6a. DSTO NUMBER

DSTO-RR-0216
6b. AR NUMBER

AR-011-960
6c. TYPE OF REPORT

Research Report
7. DOCUMENT DATE

August, 2001

8. FILE NUMBER

N9505/21/42
9. TASK NUMBER

JNT 00/130
10. SPONSOR

DGC4
11. No OF PAGES

24
12. No OF REFS

33
13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/corporate/
reports/DSTO-RR-0216.pdf

14. RELEASE AUTHORITY

Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
SALISBURY, SOUTH AUSTRALIA 5108

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limitations
18. DEFTEST DESCRIPTORS

Situation awareness
Software architecture
Visualisation
Complex systems
Software tools
19. ABSTRACT

A modern military enterprise is characterised not only by its people, physical infrastructure and geography, but
also by its business processes, knowledge management practices and fluid organisational structures. Management,
coordination, planning and development of the enterprise all require awareness of its current state. To aid these
functions, the DSTO task JNT 00/130 entitled "Assembly and Deployment of Defence Visualisation Solutions"
(ADDVIS) proposes the use of information visualisation techniques to produce integrated enterprise situation
awareness pictures tailored to meet the requirements of ADF functions such as capability development, system
management and self-synchronisation. To this end, Information Technology Division (ITD) is performing research
and development (R&D) into the next generation of information visualisation systems which will enable the rapid
assembly and deployment of Defence visualisation solutions. InVision is a component-based software architecture
for the rapid prototyping of information visualisation solutions. Its evolutionary implementation has given rise
to an experimental component infrastructure with the aid of which the assumptions and goals of the ADDVIS
task are being tested. This report describes the CLOVIS class of views, along with the associated supporting
In Vision infrastructure. The versatility and generality of the CLOVIS class of views described in this report makes
it ideal for rapid prototyping of information visualisations. Its subsumption of a number of existing information
layouts constitutes significant progress towards one of the key goals of InVision: the integration of various visual
representations, with each chosen on the basis of its particular suitability to the task at hand.

Page classification: UNCLASSIFIED

73
m
</>
m
>

33
m
"0 o
H

o
HI 9
30
3) ■ o

0)

>

6

0) o
> c
©
c
en
H
IO o o

^DEPARTMENT OF D E F E N C E~| i|QTfll

DEFENCE SCIENCE 1 TECHNOLOGY ORGANISATION I l/tf I V

ELECTRONICS AND SURVEILLANCE RESEARCH LABORATORY
PO BOX 1500 SALISBURY SOUTH AUSTRALIA, 5108
AUSTRALIA, TELEPHONE (08) 8259 5555

